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ABSTRACT 
In this paper new cubic v-splines monotonic one-dimensional profiles are presented, for the finite volume 
solution of convection-diffusion problems. By studying the profile in normalized variables, some weight 
functions have been determined for the profile. Being free of the requirement that the volumes be equal, the 
volume size can be reduced where needed. Numerical properties of the proposed method were formally 
analysed and are confirmed by numerical examples included here. 
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INTRODUCTION 

The requirement that the physical quantities in fluid dynamics laws be conserved lead, in recent 
years, to the introduction of finite volume methods (FV), which work with the integral form of the 
problem. 

These methods require the computational domain to be subdivided in a finite number of control 
volumes such that their union covers the domain. Fluxes along a face of the control volume, 
moreover, must be computed by formulae independent of the volume itself; this, together with the 
assumption that, when overlapping volumes are chosen, each internal face belongs to two 
adjacent volumes, grants conservation since flux contributions on each internal volume and only 
two cancel when the domain is recomposed by summing fluxes relative to each volume. 

The differential equation has to be integrated on each volume and this means evaluation of the 
integrals, volumes and areas; since, in general, physical quantities are assumed constant on each 
volume and on each face, a proper approximation of flux terms on the faces has to be determined1. 

Among the various methods in the literature, the most frequently adopted couple FV methods 
with finite difference formulae, with or without domain transformation2-4, or with finite element 
methods5-7. 

Consider the one-dimensional unsteady convection-diffusion equation: 

where Φ is the dependent variable, u(x,t) the convective velocity, ρ the density, Γ the diffusion 
coefficient and S the source term. By a FV technique, this equation is integrated in time between 
t and t + Δt and in space on a control volume of size A (Figure 1): 
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where ~ stands for the spatial average,* for the temporal average and S is an average in both time 
and space of the source values. When discretizing equation (1) by a FV method, because of the 
presence of a convective flux, the choice of a profile by which variable Φ is assumed to follow 
some assigned local behaviour, which takes the velocity field into account, is very useful and 
effective. 

For the definition of such a profile it is useful to have a grid of points together with the 
volumes. In fact the two subdivisions of the domain are strongly correlated: a definition of the 
grid gives rise to some criteria for the definition of the volumes and vice versa. For a coupling FD-
FV, for example, the most frequent choice is the definition of an orthogonal cartesian grid and the 
positioning of the volume faces at mid-distances between grid points. 

The simplest profile one can impose on variable Φ to evaluate it at the volume faces involves a 
linear interpolation of the values at two grid points adjacent to the face; this leads to Central 
Differencing Schemes (CDS), which, for high Peclet numbers (Pe = ιιΑ/Γ, Pe ≥ 2), gives birth to 
spurious oscillations in the numerical solution. 

In order to avoid this problem, an UPWIND profile (UDS) imposes variable Φ at a proper point 
on the volume face to take on the value it had in the upstream grid point with respect to the 
direction of the flux motion. By this approach the numerical solution has a more realistic physical 
behaviour, since the velocity vector is considered; there can arise, however, some false diffusion 
since the profile involves only one point at a time. There is also a reduced precision in 2 and 3 
dimensions, due to the flux lines not being normal with respect to grid lines; when this happens a 
Skew Upstream Differencing Scheme or a Skew Upstream Weighted Differencing Scheme is 
therefore a better choice8. 

With an Exponential Differencing Scheme (EDS)9,10, convective and diffusive fluxes are 
computed by using the solution, in closed form, of a 1D stationary problem without source terms. 
Although this scheme is very accurate for 1D problems, it is not used frequently because of its 
high computational cost, due to the computation of the exponentials included in the profile. 

In order to avoid this cost (maintaining the quality of numerical results), the Power-Law 
scheme was introduced; this scheme combines the positive aspects of CDS and UDS by giving 
different values to the coefficients in the profile, according to a criterion based on Peclet 
number11. 

A difference scheme which proves very effective in dealing with convective terms is QUICK12; 
this scheme finds the value for a volume face by a quadratic interpolation using three points, two 
of which are in the upwind direction with respect to the motion direction on the face. For instance, 
considering face r of the control volume (Figure 1), we have: 
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For the diffusive term a linear interpolation is used. The QUICK profile enjoys several 
advantages: the numerical diffusion is negligible, the algorithm is easily implemented and the 
computational cost is low. It gives, moreover, a local spatial truncation error of the second order 
for convection-diffusion equations, of the third order for pure convection problems. 

Since this scheme was devised for problems with slow time variations, when used for highly 
unsteady problems it results with less accuracy, since its temporal truncation error is O(∆t). For 
this kind of problems a modified version named QUICKEST is more advisable13; here temporal 
averages of equation (2) depend on the Courant number (c = u∆t/A). The profile on face r of the 
control volume is: 

with 

Since QUICK and QUICKEST schemes were defined only for equal volumes, we thought it could 
be useful to introduce a cubic profile with the same numerical effectiveness but which could allow 
us to work with unequal volumes. Towards this end we adopted weighted cubic v-splines defined 
by means of three consecutive grid points14. 

In this paper we are proposing the introduction of some weighting functions in order that the 
profile we define for a 1D steady flow be monotonic; the resulting local spatial truncation error is 
of the third order for equal volumes, and reduces to the second at the faces which are not 
equidistant from the two adjacent grid points. 

We stress that local monotonicity is extremely important if spurious oscillations in the 
numerical solution are to be avoided and that in our profile monotonicity is implied by the 
definition itself and not accomplished after some modification15. 

WEIGHTED CUBIC v-SPLINES 

In this section we describe the construction of weighted cubic v-splines. 
Given interval and a partition let Φ1, ... Φn be the values to be 

approximated in such a way that Φ (xi) - Φi, i = 1,2,... ,n. Α weighted cubic v-spline is a piecewise 
cubic function of C1 class, minimizing the functional 

where w(t) is an integrable function; we assume w to be piecewise constant and its value wi on 
interval [xi, xi + 1] to give the weight for the interval itself, by which the curvature of the spline 
function can be controlled; si is a point weight yielding control of the first derivative at the nodes. 
The solution of the minimization problem above must also verify one of the following conditions: 

(1) conditions on the first derivative: 

(2) natural conditions: 
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(3) periodic conditions: 

A constructive approach16, using piecewise cubic Hermite polynomials as basic functions, 
allows verifying existence and uniqueness of a weighted v-spline, under the chosen boundary 
conditions. 

Given Φi and mi, і = 1, ... ,n, the unique piecewise cubic function Φ(x), of C1 regularity, 
satisfying Φ(xi) = Φi and Φ'(xi) = mi, i = 1,..., n, can be represented17,18 as 

where 

and hi = xi + 1 - xi. Since functions Pi (x) and Di (x) are null out of interval [x¡-1, xi + 1], equation 
(7), for xi≤x≤xi + 1, becomes 

If in equation (7) coefficients mi are considered as the unknowns, minimizing functional V in (5) 
implies solving equations: 

By means of (5) and (7) we obtain19: 

for к = 2 , . . . , n -1 , where сi = wi/hi, wi = constant. 
The above n - 2 equations (10) involve n unknowns m1, ... ,mn. Two more conditions are 

needed in order for the system to be closed. They are imposed by means of the spline boundary 
conditions, which can be of first kind, i.e.: 

or of second kind, i.e.: 
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or of third kind, i.e.: 

OUR NEW PROFILE 

Very often, in what follows, we shall indicate a grid point xi simply by its index i. We use 
weighted natural cubic v-splines to define a new profile for the dependent variable. 

Consider an internal grid point and the volume relative to it (Figure 1). We build the 
weighted v-spline on interval [i - 1 , i + 1], thus obtaining a local profile for variable Φ 
involving values of such variable at three consecutive nodes. The convective nature of the 
differential equation suggests that the velocity direction, which from now on is considered 
positive, be taken into account; therefore our profile, used for determining the value of Φ on 
the right face of the control volume, involves values of Φ at nodes і - 1, i, і + 1. If the velocity 
were negative, the grid points to be used when determining Фг would be i, i + 1, i + 2 and the 
computations would be exactly the same as for the shifted points relative to positive velocity, 
considered in the opposite order. 

To compute the derivatives mi, і = 1,..., n, we solve a system obtained from (10) by assuming 
the natural spline boundary conditions. We formally solve: 

where 
a = wi_1 b = w¡ e = si-1 f = si 
g = si + 1 h=xi - xi_1 k = xi + 1 - xi 

After solving such system, the first derivative at node i + 1 can be written as: 

where ar, ßr, yr are coefficients depending on distances h and к and on the weight functions: 
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From (12) and (13) we obtain: 

where 

The technique presented until now is in general used to interpolate pointwise known functions. 
The idea we exploit is, although the values Φi are not known, we express all the other quantities 
in terms of such values Φi and only subsequently, by the discretized differential equation, 
determine them. 

After introducing a local co-ordinate system, interval [i -1, і + 1] becomes as in Figure 2. Since 
we are interested in the value of Φr, we need to consider the restriction of our v-spline to interval 
[0, x3], which is equivalent to considering the expression of Φ on interval [і, і + 1]. This profile, by 
(8), is: 

where the Hermite functions18 become: 

By evaluating (16) at χ = k/2, we have: 

Here derivatives m2 e m3 equal derivatives mi and mi + 1 previously quoted. Therefore our profile 
on the right face is: 
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with 

In order to evaluate the first derivative, , on the right face we must differentiate Φ of eqn. (16) 
and find its value at x: = k/2. We obtain: 

with 

By what was described above we obtain a profile depending on the weights si and wi. We remark 
that, by acting on such weights appropriately, the numerical solution can be handled in such a way 
that it enjoys some desired property. In a subsequent section we describe the study of the optimal 
choice of the weight coefficients which ensures a third order monotonic scheme. 

By exploiting the choice of unequal volumes, allowed by the v-splines, moreover, we can 
formulate a method in which the volume sizes are chosen in such a way that the solution is 
followed as closely as possible. 

NORMALIZED VARIABLE 

For the control of the oscillatory behaviour of the solution in (16) we impose the profile to be 
monotonic; this is performed by studying the NVD, i.e. the diagram of our variable, normalized 
by the following transformation: 

then 

By relation (20), links between the variables in approximation schemes are simplified since it is 
and . This means that, while Фг depends on Φi + 1, Φi - 1 and Φi, the normalized 

variable depends only on ; a normalized variable diagram, therefore, allows a graphic 
representation of the functional relation between the normalized value and the normalized 
value at the upstream node 

If, for example, we think ur > 0, the QUICK scheme is normalized as 

By replacing (20) in (18), we obtain: 

and the coefficient of Фi-1, by simple computation, turns out to be null. Therefore, in normalized 
variables, (18) becomes: 
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In Leonard20, NVD relative to the various known profiles are studied. This study led to stating the 
following criteria to verify validity of a scheme for equal volumes: 

(1) a necessary and sufficient condition in order for the scheme to provide second order 
approximation is that its NVD includes point Qf(1/2,3/4) 

(2) a necessary and sufficient condition in order for the scheme to be of the third order is that 
the derivative at Q be 3/4. 

These criteria hold for every functional relation, linear or non-linear. It has also been remarked 
that NVD lines in the second quadrant (negative abscissa, positive ordinate) are a feature of 
profiles with unrealistic oscillatory behaviour while NVD lines in the fourth quadrant (positive 
abscissa and negative ordinate) are typical of schemes generating numerical diffusion. 

The Exponential Unwinding scheme20, was developed exactly by considering these criteria: it 
assumes a local exponential behaviour for the variable and, in normalized variable, it yields a non
linear relation such as: 

Since the two criteria above are verified by it, this scheme is of the third order; it has to be 
remarked, however, that its computational cost is very high and that it is convenient only when 

. Out of such interval it has to be continued by means of other schemes such as QUICK 
or UPWIND. This kind of continuation is realized by algorithm EULER-QUICK and by its 2D 
version, SHARP20. 

An NVD analysis is the basis also of another recent algorithm, ULTIMATE, where the value 
is modified according to the universal limiter13. 

A NEW PROFILE: FAST (FLOW APPROXIMATION BY SPLINE TECHNIQUES) 

We studied the general profile (24) in order to impose monotonicity. By using equal volumes and 
natural cubic splines (i.e. a = b = l, e = f = g = 0), our profile in NVD is: 

which is represented by a straight line including point Q, with angular coefficient at Q of 11/16; 
therefore (26) yields a second order scheme (criterion 1). If unequal volumes are used, in NVD, 
we have: 

This straight line, depending on the value of v, the ratio h/k of the sizes of two consecutive volumes, 
includes a general point Q, of abscissa 1/2, with a family of values of its ordinate (Figure 3). By 
imposing that the ordinate of Q be less than unity, so that the line keeps within the unit square, we 
obtain the condition l/3<v<3. Although the ordinate of Q can be different from 3/4 (which anyway 
is required only for schemes making use of equal volumes), the second order approximation is 
ensured, as can be seen in the next section. 

We also studied our profile by assuming the volumes to be equal and including weight co
efficients. Numerical experience21, suggests that only three of the five weight coefficients should 
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be considered: a, b and f. Varying weights e and g shows a very limited influence on the profile, 
so that we decided to set them both to zero: 

e = g = 0 (28) 
If we assign/proper values, we can control the first derivative of the cubic interpolation function 
at node i, while modifying coefficients a and b affects curvature in intervals [i — 1, i] and [і, і + 1]. 
By this we obtain: 

Since we are assuming the volumes to be equal, criteria 1 and 2 are to be satisfied. 
Let us therefore impose that the profile goes through Q = (1/2,3/4) and obtain the following 

conditions on the weight coefficients: 

The first of the above conditions was chosen since it simplifies the profile expression. 
If we impose the further condition that the diagram includes the origin, we obtain a = -8b/3 

when f = 0 and a = -4(3 + fh)/5 when b = 3/2. 
Results obtained for the aforementioned schemes were used to study the general profile (18) 

when both volume sizes and weight coefficients (only three of them) can vary. In NVD we obtain: 

By imposing that at the general point the derivative be 3/4 (criterion 2) 
a second condition on the weight coefficients is obtained : 
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Being b necessarily positive, this implies 0 < ν < 3, which confirms the already considered 
limitation on the ratio of consecutive volume sizes. Conditions (28),(30),(32), in profile (31) yield: 

In the NVD of Figure 4 this profile is represented by a bundle of straight lines, all with angular 
coefficient of 3/4, including the general point Q (depending on v). By transformation (21), profile 
(33) can be written in unnormalized variables, i.e.: 
FAST 

The graph in Figure 4 shows that, if regularity conditions must be verified (for instance the null 
value at the origin) and if we desire a continuous profile in NVD, the profile can only be piecewise 
defined [22]. Our choice was: 
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with 

Scheme (35) is used only in the unit square. Out of such square we adopt the UPWIND scheme. In 
Figure 5 the NVD representation of FAST is given for various values of v. 

TRUNCATION ERRORS 

Analysis of the formal order of accuracy of our splines profile is based on Taylor series truncated 
expansions of variable Φ on the right face of the control volume: 

By replacing these expansions in our profile we can find coefficients for the derivatives of Φ on 
face r, i.e. the scheme order on face r. 

We follow a similar sequence as in the preceding section. In the case of equal volumes (v1 = 1), 
without weights, after the proper simplifications, we have: 
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For unequal volumes we get: 

For both the second order is ensured; we also point out that the coefficient of the second derivative 
turns out to be independent of v1, i.e. the order of approximation is totally uninfluenced by 
changes in volume sizes. (Each time we mention unequal volumes, we refer to Figure 1.) 

For the profile including weights a, b and f, with equal volumes, we have: 

once more of the second order. 
We finally studied the local truncation error for profile FAST. By replacing expansions (36) in 

it we obtain: 

so that 

Profile FAST, therefore, gives a third order scheme for equal volumes (v1 = 1), which reduces to 
the second order only at the volumes where a change in size occurs. 

If we want to exploit the scheme at its best, then, it is required that the reduced volume size be 
maintained for a reasonable number of volumes (never less than 2) and that parameter v1 be less 
than 2 in order for the coefficient of the second derivative to be as small as possible. 

In equation (1) with Γ = 0 and ρ = 1 we obtain, for equal volumes, a spatial second order of 
approximation; by adopting an explicit time discretization scheme, we have: 

where 
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If we use the Taylor expansions (36) we obtain, after proper simplifications the following 
expression: 

The expansion of with respect to time at Фin gives: 

if we equate the two expansions above, suppress indices and divide by Δt, we get: 

We now use the differential operator to eliminate the temporal derivative and, finally, obtain: 

For equal volumes we can recognize a numerical dissipation coefficient of and a numerical 

dispersion coefficient of 

In equation (1) with Γ≠0, it can be more convenient to approximate the first derivative of Φ by a 
centred difference scheme instead of using the profile, as FV methods allow. By this approach the 
scheme turns out to be of second order. 

VON NEUMANN STABILITY 

Let us consider equation 

By FV methods, if an explicit time discretization scheme is adopted, at node і we have: 
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where A is the control volume size, (Figure 1). 

As can be seen in Figure 1, we are assuming the volumes are not necessarily equal. It should be 
remarked that, if the volumes are equal, all that follows holds and yields the stability region after 
setting v1 = v2 = 1 in all the quoted quantities. 

The analysis we are going to perform should assume that, during the time advance, the solution 
being the superposition of wavetrains of different wave numbers, the components of the 
wavetrains "disperse", so that a non-uniform oscillatory wave is obtained, of approximate form 

(j imaginary unit), where ψ and the phase are functions of x and t and of the local, 
variable, wave number k(x, t)24. 

We are aware that this method is rather unusual, but we saw this as a reasonable way to study 
stability for unequal volumes. 

We based our study on the application of the Finite Fourier Transform of the discretized 
solution Фi (і = 0, 1, 2, ... , М-1, with M number of grid points). By using variables as in 
Strickwerda25, we have 

where j is the imaginary unit, x1 is the current abscissa and [0, L] is the domain. 
We replace profile FAST in the scheme and obtain: 

where v1 = ∆xi - 1/∆xi and v2 = ∆xi/∆xi + 1. 
By inversion of Fourier Transform and its application in (49), we obtain 

where 

is the amplification factor26, with 

A necessary and sufficient condition in order for the scheme to be stable is |G|≤1. 
By writing |G|2≤1 explicitly, we have: 

whence, being c > 0, 
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In the following figures the region of stability has been represented by plotting the right hand side 
of the above inequality, interpreted as a function only of V1 and and fixing several 

values of v2. 
The reason for choosing to give values to parameter v2 was its lesser relevance with respect to 

the other two parameters. Indeed v2 appears only in the ratio (2v2 + 3)/[2(v2 + 1)], which always 
has a numerator equal to the denominator plus 1. The values we chose for v2 were 1/3, 1/2, 1, 2: 
1/3 because it represents a limitation of the domain for variable v2 (see section on FAST); 1/2 and 
2 because in actual computations we halve (double) the volume size when we want a closer study 
of the numerical solution (when the solution is smooth enough); 1 because it gives information 
relative to the uniform step situation. 

The study of the surfaces above has been carried out for сЄ(0,0.6] and 
In Figure 6 the surface is plotted; in Figure 7 the surface ; in Figure 8 

the surface , in Figure 9 the surface . 
A close observation and comparison of Figures 6-9 shows the influence of both parameters 

v1 and v2 to be very limited. In particular, Figure 8 relative to v2 = 1, includes, at v1 = 1 the 
stability region for equal volumes: is is easily seen that the surface is "almost" obtained by a 
rigid motion of along the v1 axis, i.e. that changes in volume size do not lead to reduce 
the stability region. 

The same kind of study has been performed for the parabolic equation 
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In this case the scheme becomes: 
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so that G becomes: 

We set . The necessary and sufficient condition, with both sides squared, becomes: 
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For equal volumes this reduces to: 

If and , i.e. in the interior of the domain, the stability region is bounded by the surfaces 
of Figure 10. For or , inequality (58) degenerates into α ≥ c2/2. 

In order to represent the stability region by its lower and upper limitations, given by inequality 
(57), we considered some couples of values for parameters v1 and v2 and chose the most 
representative couples: (1, 1) (equal volumes) (Figure 10), (1, 2) (halving the second volume size) 
(Figures 11 and 12 from different viewpoints)) and (2, 1) (halving the first volume size) (Figure 13). 

PHASE ERRORS 

By analysing the amplification factor G we can also study the phase error of the hyperbolic 
scheme, i.e. the positive or negative delay of the numerical solution with respect to the exact 
solution27. In a time-dependent convective problem, if the influence of boundary conditions is 
neglected, the exact solution can be written as 

where к - k(x, t) is the local wave number, is the local phase, ω = ku is the local 
frequency (u depending on k). The phase shift in the continuum is given as 

with A the volume amplitude and Δt any time shift. 
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In order to compute the phase error, (60) has to be compared with the numerical phase shift and this 
can be done by means of the amplification factor. From properties of polar co-ordinates we have: 

From (51) this becomes: 

If is small enough, so that we obtain: 



22 V. PENNATI, M. MARELLI AND L.M. DE BIASE 

Therefore the phase error r is: 

If only the leading part of this error is considered, we get 

The study of this form of r leads to the following considerations: first of all, the phase error 
depends on changes in the volume size. If such size remains constant (v1 = v2 = 1), the phase factor 
r is proportional to 
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If, on the contrary, there is some change in the volume size, factor r in (66) is composed of a 
constant part μ multiple of 1/8 and a part proportional to , i.e. to h2. If for example v1 = 1 and 
v2 = 3, it is (Figure 2) 

For v1 = 3 and v2 = 1, we have: 

Therefore r has values greater or less than -1 depending on the ratios v1 and v2 of consecutive 
volume sizes. 

It can be remarked that the constant part μ, multiple of 1/8, can be compensated when size 
variations opposite to those determining it occur. For v1 = 1 and v2 = 3, in fact, we have μ = -1 + 
1/8, while for v1 = 3 and v2 = 1 it is μ = -1 -1 /8 . This property could be taken advantage of 
profitably when formulating adaptive methods. 

PHYSICALLY REALISTIC SOLUTIONS: PATANKAR RULES 

Four rules, described by Patankar11, grant a stable convergence of a FV algorithm to a physically 
realistic solution. If in the discretized stationary equation (55) we replace profile FAST for the 
convective term and a central approximation of second order for the diffusive term, we obtain: 

where Ai, Ai - 1, Ai - 2, Ai + 1 are coefficients of Φ at the corresponding nodes and Bi is the source 
term, with values: 

We confront this scheme, applied to equation (55), with respect to the following four criteria: 
• Rule 1: Consistence on the faces of the control volume. When a face is in common between 

two adjacent volumes, the flux through it must be represented identically for the two 
volumes in the discretized equation. This means that the flux leaving a given volume 
through a particular surface is exactly the same as that which enters the adjacent volume 
through the same surface, і. e. Фl (і + 1) = Фг (і). In FAST this condition is verified. 

• Rule 2: Positive coefficients in the discretized equation. The value of variable Φ at a grid 
point is related to the values of Φ at the grid points close to it. If, therefore, all conditions in 
the problem remain unaltered, whenever Φ increases at a grid point, it must increase also at 
the grid points in the vicinity (think, e.g. of heat equation). 

By applying this rule to FAST, we notice that Ai and Ai-1 are always positive, Ai+1 can be 
positive under proper conditions on the quantities appearing in it, while Ai-2 is always 
negative. This disadvantage, however, can be overcome in a time-dependent problem by 
partitioning coefficients in such a way that a positive part can be isolated and that the matrix 
of the algebraic system relative to 1D problems becomes tridiagonal28. 

• Rule 3: A correspondence between the coefficients. The coefficient relative to the node at 
study must equal the sum of the coefficients relative to the neighbouring nodes, i.e. 
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This implies that the coefficient at the central grid point і is a weighted average of 
coefficients at the neighbouring grid points. By looking at coefficients (71), it is easily seen 
that the required relation is verified. 

• Rule 4: Negative slope for the source term. Coefficient Ai can be made negative when 
linearizing B¡: therefore we have to require that the linearization coefficient for Bi be 
negative in order for the solution not to become physically unrealistic. In the problems we 
have studied no approximation of the source term was needed. 

NUMERICAL EXPERIENCE 

Profile FAST has been tested on two equation types: the stationary parabolic and the hyperbolic. 
The numerical solution was computed on a grid of points defined on the unit interval. The control 
volumes were defined by putting their faces at mid-distances between consecutive grid points. For 
the stationary equation the case test, proposed by Leonard29 is: 

with 

and with Dirichlet boundary conditions: Φ (0) = 0 and Φ (1) = 0.1. 
This problem is of significance in the study of convection-diffusion problems because of 

the source term: actually most of the classical schemes for convective terms (CDS, EDS,...) 
give accurate solutions only if no source term is present. With the source term S(x) above, 
moreover, the solution follows three different behaviours on the domain: quadratic, constant 
and exponential. 

Numerical results, presented in Figure 14 (Pe = 5) and Figure 15 (Pe = 10), were obtained by 
a reduction in volume size where the solution is exponential. On interval [0, 1] we used 31 
volumes with initial volume size Δx = 0.05 which is halved three times in the final part of the 
interval. 

In Figure 16 we give results obtained by means of QUICK for the same number of volumes, 31, 
and physical conditions (Pe = 10). As can be seen, there remains an oscillatory behaviour, with 
maximum error at the last grid point. 

FAST was also implemented on three benchmark problems13, obtained as the solutions of an 
advection unsteady 1D equation: 

with Dirichlet boundary conditions. 
The first test problem deals with a piecewise constant function, with a jump: 
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The second deals with an isolated wave, given by a squared sinum, which has continuous gradient: 

The third problem deals with a half ellipse, which combines continuous and discontinuous 
changes in the gradient: 

Numerical examples were obtained for с = 0.05, with refinements in volume size near the 
discontinuity points; we used 76 volumes for the jump function, 77 for the other two. 

By imposing monotonicity it was possible to avoid oscillatory behaviours completely and to 
obtain a satisfactory simulation of the exact solution with a numerical solution shown in Figures 
17,18 and 19 after 900 time steps. Figure 20 gives results for the jump function obtained by 
means of EULER-QUICK with 100 volumes. We performed several tests with various values of 
the Courant number с and, as forecast by the theoretical study, verified the method to be stable for 
values of c ≤ 0.6. 
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CONCLUSION 

In this paper a new FV method has been presented, based on a profile, named FAST, obtained by 
means of weighted cubic v-splines for 1D parabolic and hyperbolic problems, with possible 
changes in the volume size. The study of a normalized variable allows an optimal definition of the 
weights in such a way that the order of approximation can be controlled and monotonicity can be 
imposed. The study of truncation errors shows that the method is of the third order (which reduces 
to the second at a volume where a change in size occurs). 

Patankar's criteria to grant physically realistic solutions have been verified. Properties of 
stability and phase shift are formally analysed and numerically tested by means of some 
benchmark problems. An extension of the method capable of dealing with large Δt can be devised 
by similar reasoning as in Leonard et al.30 and Roache31. 

Particularly good results are obtained by combining the accuracy of the proposed profile with 
a careful choice of the volume sizes: namely a smaller (halved) size can be used in the regions 
where the solution has discontinuities or high gradients. 

Simplicity and generality of profile FAST, obtained by weighted cubic v-splines, suggest that 
the method can be extended for the solution of 2D or 3D convection-diffusion equations in fluid 
dynamics. 

This extension could be performed both by simple operator splitting using 1D formulae or the 
same philosophy described in this paper could be followed by the definition of a 2D or 3D 
v-spline; in this latter approach, several weighting coefficients are to be defined. This, of course, 
implies a certain amount of computation, but it also implies that the approximation is extremely 
flexible and accurate. 
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